Measurement: Area of Composite Shapes

Aim:

Calculate and compare the area of rectangles (including squares), including using standard units, square centimetres $\left(\mathrm{cm}^{2}\right)$ and square metres $\left(\mathrm{m}^{2}\right)$, and estimate the area of irregular shapes.
To calculate the area of composite shapes.

Success Criteria:

I can separate composite shapes into separate rectangles.
I can multiply the length and width of each rectangle.
I can add the area of each rectangle together to find the total area of a composite shape.

I can explain how to efficiently separate composite shapes into rectangles.

Key/New Words:

Area, length, width, rectangle, square, standard unit, square centimetres, square metres, composite.

Resources:

Lesson Pack
Plain paper
Squared paper

Preparation:

Diving into Mastery Sheets - per child
Area of Composite Shapes Activity Sheet - Per child

Prior Learning: It will be helpful if children have learned how to calculate the area of rectangles.It would also be helpful if children have previously found unknown sides within composite shapes.

Learning Sequence

Remember It: Children revisit prior learning, ordering the total area of each rectangle from smallest to largest.
Can children multiply the length and width of a given rectangle?

reminded how to find unknown sides. | Area of Composite Shapes: Using the definition featured on the Lesson Presentation, children learn what a |
| :--- |
| composite shape is. They use this definition and their understanding of how to find the area of rectangles to |
| find the area of the composite shape shown. They multiply the length and width of separate rectangles and then |
| add the answers to find the area. Can children add the area of each rectangle together to find the total area of |
| a composite shape? |

	Area of Composite Shapes: Children complete the differentiated Area of Composite Shapes Activity Sheet, showing that they can calculate the area of composite shapes. Children calculate the Children calculate the Children extend their area of composite area of composite learning beyond the shapes that do not have objective when finding visibly separated visibly separated lines the area of composite shapes with holes They use given in the middle. dimensions to calculate missing lengths and widths within composite shapes, helping to find the total area.	
$(\sim$	Diving into Mastery: Schools using a mastery approach may prefer to use the following as an alternative activity. These sheets might not necessarily be used in a linear way. Some children might begin at the 'Deeper' section and in fact, others may 'dive straight in' to the 'Deepest' section if they have already mastered the skill and are applying this to show their depth of understanding. Children solve fluency questions to find the area of composite shapes. First, the shapes are divided into rectangles and all the necessary sides are given. Then the children have to calculate unknown sides and decide how best to divide the composite shapes. To practise their fluency, children measure the sides of a composite shape in order to find the overall area. They draw three different composite shapes with a given area. In our problem solving questions, children have to recognise when it is impossible to find the area of a composite shape because not enough information is given. An open ended question challenges children to find the dimensions of a playground with a known area.	
	Boxed Up: Children recap on learning, attempting to answer a worded problem with partners. They use their understanding of area to help explain their answers.	\bigcirc

Exploreit

Designit
Using squared paper, children draw different composite shapes which have an area of $100 \mathrm{~cm}^{2}$. Can they include shapes with holes and gaps inside?
Orderit: Children draw their own composite shapes. They cut the shapes out and order them from smallest to greatest in area.
Designit: Children design a poster to explain, with examples, how to efficiently calculate the area of composite shapes.
Learnit: Children will find this visually exciting Knowledge Organiser a useful tool for strengthening skills on area and perimeter.

Maths

Measurement

Regent Studies | www.regentstudies.com

- To calculate the area of composite shapes.

Success Criteria

- I can separate composite shapes into separate rectangles.
- I can multiply the length and width of each rectangle.
- I can add the area of each rectangle together to find the total area of a composite shape.
- I can explain how to efficiently separate composite shapes into rectangles.

Remember It

Order the shapes from smallest to largest in area.

$<$

\ll

Finding Unknown Sides

Side A and the vertical side measuring 6 cm are equal to the parallel vertical side of 10 cm .

$$
\begin{aligned}
& A=10 \mathrm{~cm}-6 \mathrm{~cm} \\
& A=4 \mathrm{~cm}
\end{aligned}
$$

Area of Composite Shapes

Today, we will learn how to calculate the area of composite shapes. A composite shape is a figure that consists of two or more geometric shapes.

Two rectangles have been combined to make this composite shape. The length of each rectangle is 4 cm and the width is 2 cm .

To calculate the area of the composite shape, we firstly find the area of each individual rectangle, then add the totals together.
$(4 \mathrm{~cm} \times 2 \mathrm{~cm})+(4 \mathrm{~cm} \times 2 \mathrm{~cm})=16 \mathrm{~cm}^{2}$
$8 \mathrm{~cm}+8 \mathrm{~cm}=16 \mathrm{~cm}^{2}$

Area of Composite Shapes

Calculate the area of this composite shape.

$$
\begin{gathered}
(7 m \times 2 m)+(7 m \times 2 m)=28 m^{2} \\
14 m+14 m=28 m^{2}
\end{gathered}
$$

Area with Missing Lengths

With many composite shapes, the rectangles are not always clearly divided.
Imagine, for example, the floor of a living room.

Area with Missing Lengths

Once each length is known, we can calculate the area by splitting the composite shapes into rectangles.

Area with Missing Lengths

In the previous example, the shape was separated into two rectangles horizontally. Could the shape be separated differently?

In this example, the composite shape has been separated into two rectangles - as shown by the vertical dotted line.

Rectangle C measures 5 m by 4 m . The area is $20 \mathrm{~m}^{2}$.

Rectangle D measures 2 m by 3 m . The area is $6 \mathrm{~m}^{2}$.

The total area is $20 m^{2}+6 m^{2}=26 m^{2}$.

Being Mathematically Efficient

Although the two calculations gave the same answer, the second method - shown below - was the more mathematically efficient.

Being Mathematically Efficient

Look at the composite shape. With a partner, agree on a mathematically efficient way to separate the shape into two rectangles. Explain your thinking.

If you split the shapes vertically, you would have to calculate 2 missing sides.

It is more mathematically efficient to separate the shapes horizontally as each rectangle's dimensions are given.

Rectangle $A 9 \mathrm{~cm} \times 4 \mathrm{~cm}=36 \mathrm{~cm}^{2}$
Rectangle B $5 \mathrm{~cm} \times 4 \mathrm{~cm}=20 \mathrm{~cm}^{2}$
$36 \mathrm{~cm}^{2}+20 \mathrm{~cm}^{2}=56 \mathrm{~cm}^{2}$

Area 41

Which of the following composite shapes has an area of $41 \mathrm{~cm}^{2}$? Explain fully.

Your Turn!

The picture shows a garden with a pond at Twinkl Primary School. Mr Jacobs, the school gardener, is laying new turf in the school garden. To lay new grass, he needs to know how much turf he should buy.

How might the area of the garden be calculated? Discuss.
16 m

To calculate the area of turf needed, the area of the pond should be subtracted from the overall area of the garden.

Garden

$16 \mathrm{~m} \times 12 \mathrm{~cm}=192 \mathrm{~m}^{2}$
Pond
$6 \mathrm{~cm} \times 3 \mathrm{~cm}=18 \mathrm{~m}^{2}$
$192 m^{2}-18 m^{2}=174 m^{2}$

- To calculate the area of composite shapes.

Success Criteria

- I can separate composite shapes into separate rectangles.
- I can multiply the length and width of each rectangle.
- I can add the area of each rectangle together to find the total area of a composite shape.
- I can explain how to efficiently separate composite shapes into rectangles.

Regent Studies| www.regentstudies.com

Aim : To calculate the area of composite shapes.				Date:					
				Delivered By:			Support:		
Success Criteria	Me	Friend	Teacher	T	PPA	S	I	AL	GP
I can separate composite shapes into separate rectangles.				Notes/Evidence					
I can multiply the length and width of each rectangle.									
I can add the area of each rectangle together to find the total area of a composite shape.									
I can explain how to efficiently separate composite shapes into rectangles.									
Next Steps									

T	Teacher	I	Independent
PPA	Planning, Preparation and Assessment	AL	Adult Led
S	Supply	GP	Guided Practice

Aim : To calculate the area of composite shapes.				Date:					
				Delivered By:			Support:		
Success Criteria	Me	Friend	Teacher	T	PPA	S	I	AL	GP
I can separate composite shapes into separate rectangles.				Notes/Evidence					
I can multiply the length and width of each rectangle.									
I can add the area of each rectangle together to find the total area of a composite shape.									
I can explain how to efficiently separate composite shapes into rectangles.									
Next Steps									

T	Teacher	I	Independent
PPA	Planning, Preparation and Assessment	AL	Adult Led
S	Supply	GP	Guided Practice

Area of Composite Shapes

I can calculate the area of composite shapes.

Calculate the area of each rectangle, then calculate the area of the whole composite shape.

1. Area a: \qquad cm^{2} Area b: \qquad cm^{2} Total: \qquad cm	2. Area a: \qquad cm^{2} Area b: \qquad $\mathrm{cm}^{2} \quad$ Total: \qquad cm^{2}
3. Area a: \qquad cm^{2} Area b: \qquad cm^{2} Total: \qquad cm	4. Area a: \qquad cm^{2} Area b: \qquad $\mathrm{cm}^{2} \quad$ Total: \qquad cm^{2}
5. Area a: \qquad cm^{2} Area b: \qquad cm^{2} Total: \qquad cm^{2}	6. Area a: \qquad cm^{2} Area b: \qquad cm^{2} Total: \qquad cm^{2}

Note: Composite shapes are not to scale.

Area of Composite Shapes

I can calculate the area of composite shapes.

Calculate the area of each rectangle, then calculate the area of the whole composite shape.

Note: Composite shapes are not to scale.

Area of Composite Shapes

I can calculate the area of composite shapes.

Identify the shapes where the area can be calculated. Calculate the area of each composite shape.

Note: Composite shapes are not to scale.

Area of Composite Shapes

I can calculate the area of composite shapes.

Calculate the shaded area of each shape.

Note: Composite shapes are not to scale.

Area of Composite Shapes Answers

1* Answers

Question	Answer	
Identify the shapes where the area can be calculated. Calculate the area of each compound shape.		
1	Area a: $\mathbf{4} \mathbf{c m}^{\mathbf{2}}$	Area b: $\mathbf{1 0} \mathbf{c m}^{\mathbf{2}}$

Area of Composite Shapes Answers

2* Answers

Question	Answer
Identify the shapes where the area can be calculated. Calculate the area of each compound shape.	
1	Total: $\mathbf{4 2} \mathbf{c m}^{\mathbf{2}}$
2	Total: $\mathbf{3 5} \mathbf{c m}^{\mathbf{2}}$
3	Total: $\mathbf{3 8} \mathbf{c m}^{\mathbf{2}}$
4	Total: $\mathbf{4 2} \mathbf{c m}^{\mathbf{2}}$
5	Total: $\mathbf{3 8 c \mathbf { c m } ^ { \mathbf { 2 } }}$
6	Total: $\mathbf{9 6 c \mathbf { c m } ^ { \mathbf { 2 } }}$

3* Answers

Question	Answer
Identify the shapes where the area can be calculated. Calculate the area of each compound shape.	
1	Total: $\mathbf{1 0 5} \mathbf{m}^{\mathbf{2}}$
2	Total: $\mathbf{9 8} \mathbf{m}^{\mathbf{2}}$
3	Total: $\mathbf{5 9} \mathbf{m}^{\mathbf{2}}$
4	Total: $\mathbf{7 1 \mathbf { m } ^ { \mathbf { 2 } }}$

1)

a) Rectangle a $5 \mathrm{~m} \times 2 \mathrm{~m}=10 \mathrm{~m}^{2}$

Rectangle $b 3 \mathrm{~m} \times 1 \mathrm{~m}=3 \mathrm{~m}^{2}$
$10 m^{2}+3 m^{2}=13 m^{2}$
b) Rectangle a $5 \mathrm{~cm} \times 3 \mathrm{~cm}=15 \mathrm{~cm}^{2}$

Rectangle $b 6 \mathrm{~cm} \times 2 \mathrm{~cm}=12 \mathrm{~cm}^{2}$
$15 \mathrm{~cm}^{2}+12 \mathrm{~cm}^{2}=27 \mathrm{~cm}^{2}$
c)

Rectangle a $3 \mathrm{~m} \times 7 \mathrm{~m}=21 \mathrm{~m}^{2}$
Rectangle $b \quad 3 \mathrm{~m} \times 2 \mathrm{~m}=6 \mathrm{~m}^{2}$
$21 m^{2}+6 m^{2}=27 m^{2}$
d)

Rectangle a $5 \mathrm{~cm} \times 3 \mathrm{~cm}=15 \mathrm{~cm}^{2}$
Rectangle $b=7 \mathrm{~cm} \times 5 \mathrm{~cm}=35 \mathrm{~cm}^{2}$
$15 \mathrm{~cm}^{2}+35 \mathrm{~cm}^{2}=50 \mathrm{~cm}^{2}$

1) There are 2 ways this shape can be split up, but both should give the correct area of $36 \mathrm{~cm}^{2}$.

2) Children will draw composite shapes that can be split into 2 or more parts. When calculating, children should multiply the sides of each separated rectangle, before adding the answers together to find the overall area.

Examples include
$(6 \mathrm{~cm} \times 5 \mathrm{~cm})+(5 \mathrm{~cm} \times 5 \mathrm{~cm})=55 \mathrm{~cm}^{2}$
$(7 \mathrm{~cm} \times 5 \mathrm{~cm})+(5 \mathrm{~cm} \times 4 \mathrm{~cm})=55 \mathrm{~cm}^{2}$
$(8 \mathrm{~cm} \times 5 \mathrm{~cm})+(3 \mathrm{~cm} \times 5 \mathrm{~cm})=55 \mathrm{~cm}^{2}$
1)

a) Lautaro is correct. It is not possible to calculate the total area of the composite shape because we can not calculate the lengths of the two top horizontal sides.
b) The measurements for the 2 missing lengths are 18 cm for the top horizontal side and 4 cm for the shorter horizontal side between rectangles a and d.

Rectangle a: $12 \mathrm{~cm} \times 8 \mathrm{~cm}=96 \mathrm{~cm}^{2}$
Rectangle b : ? $\times 6 \mathrm{~cm}=$ unknown
Rectangle c: $10 \mathrm{~cm} \times 20 \mathrm{~cm}=200 \mathrm{~cm}^{2}$
Rectangle d: $2 \mathrm{~cm} \times 6 \mathrm{~cm}=12 \mathrm{~cm}^{2}$

```
96\mp@subsup{cm}{}{2}+200\mp@subsup{\textrm{cm}}{}{2}+12\mp@subsup{\textrm{cm}}{}{2}=308\mp@subsup{\textrm{cm}}{}{2}
416\mp@subsup{cm}{}{2}-308\mp@subsup{\textrm{cm}}{}{2}=108\mp@subsup{\textrm{cm}}{}{2}
108\mp@subsup{\textrm{cm}}{}{2}\div6\textrm{cm}=18\textrm{cm}
18cm-(8cm + 6cm) = 4cm
```

2) Open ended question with various possible answers. An example is given.

Please make sure that you print this resource at 100% so that all measurements are correct. To do this, follow the relevant steps below.

Adobe Reader or Adobe Acrobat

- Adobe Reader is a free PDF viewer, from Adobe. To install a copy of Adobe Reader, go to https://get.adobe.com/uk/reader/.
- Once Adobe Reader is installed, open your PDF.
- Go to File>Print.
- Under ‘Page Sizing \& Handling’, select ‘Size’.
- From here, make sure that 'Actual Size' is selected.
- Print this page as a test, making sure that the shape below is the correct size once printed.
- If the test print is correct, print your PDF.

Foxit Reader

- Go to File>Print.
- Set the 'Scaling' to 'None'.

1) Find the area of the following shapes. (Shapes are not drawn to scale)
a)

b)

c)

d)

2) Use a ruler to draw on the ways you could split this shape to find the area. Measure the sides of each shape to calculate the overall area.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3) Draw 3 composite shapes that each have an area of $55 \mathrm{~m}^{2}$. You do not need to draw each shape to scale.
4) Lautaro wants to calculate the area of this shape.

a) Is he correct? Prove it.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
5) The school playground has an area of $6000 \mathrm{~m}^{2}$. It is made up of 3 rectangles around the school building which measures $45 \mathrm{~m} \times 25 \mathrm{~m}$. What could the dimensions be of the total playground?

Please make sure that you print this resource at 100% so that all measurements are correct. To do this, follow the relevant steps below.

Adobe Reader or Adobe Acrobat

- Adobe Reader is a free PDF viewer, from Adobe. To install a copy of Adobe Reader, go to https://get.adobe.com/uk/reader/.
- Once Adobe Reader is installed, open your PDF.
- Go to File>Print.
- Under ‘Page Sizing \& Handling’, select ‘Size’.
- From here, make sure that 'Actual Size' is selected.
- Print this page as a test, making sure that the shape below is the correct size once printed.
- If the test print is correct, print your PDF.

Foxit Reader

- Go to File>Print.
- Set the 'Scaling' to 'None'.

1) Find the area of the following shapes.
(Shapes are not drawn to scale)

c)

2) Find the area of the following shapes. (Shapes are not drawn to scale)
a)

b)

c)

d)

3) Use a ruler to draw on both ways you could split this shape to find the area.

Measure the sides of each rectangle to calculate the overall area. Check that both methods give you the same answer.

2) Draw 3 composite shapes that each have an area of $55 \mathrm{~m}^{2}$. You do not need to draw each shape to scale.

1) Use a ruler to draw on both ways you could split this shape to find the area.

Measure the sides of each rectangle to calculate the overall area. Check that both methods give you the same answer.

2) Draw 3 composite shapes that each have an area of $55 \mathrm{~m}^{2}$. You do not need to draw each shape to scale.

1) Lautaro wants to calculate the area of this shape.

a) Is he correct? Prove it.
b) If the overall total area is $416 \mathrm{~cm}^{2}$, what would the missing measurements be?
2) The school playground has an area of $6000 \mathrm{~m}^{2}$. It is made up of 3 rectangles around the school building which measures $45 \mathrm{~m} \times 25 \mathrm{~m}$. What could the dimensions be of the total playground?

School building
$=45 \mathrm{~m} \times 25 \mathrm{~m}$

Playground

1) Lautaro wants to calculate the area of this shape.

It is impossible to calculate the area of this shape. There aren't enough measurements given.

a) Is he correct? Prove it.
b) If the overall total area is $416 \mathrm{~cm}^{2}$, what would the missing measurements be?
2) The school playground has an area of $6000 \mathrm{~m}^{2}$. It is made up of 3 rectangles around the school building which measures $45 \mathrm{~m} \times 25 \mathrm{~m}$. What could the dimensions be of the total playground?

Measurement: Area of Composite Shapes

To calculate the area of composite shapes.		
I can separate composite shapes into separate rectangles.		
I can multiply the length and width of each rectangle.		
I can add the area of each rectangle together to find the total area of a composite shape.		
I can explain how to efficiently separate composite shapes into rectangles.		

Measurement: Area of Composite Shapes

To calculate the area of composite shapes.		
I can separate composite shapes into separate rectangles.		
I can multiply the length and width of each rectangle.		
I can add the area of each rectangle together to find the total area of a composite shape.		
I can explain how to efficiently separate composite shapes into rectangles.		

Measurement: Area of Composite Shapes

To calculate the area of composite shapes.		
I can separate composite shapes into separate rectangles.		
I can multiply the length and width of each rectangle.		
I can add the area of each rectangle together to find the total area of a composite shape.		
I can explain how to efficiently separate composite shapes into rectangles.		

Measurement: Area of Composite Shapes

To calculate the area of composite shapes.		
I can separate composite shapes into separate rectangles.		
I can multiply the length and width of each rectangle.		
I can add the area of each rectangle together to find the total area of a composite shape.		
I can explain how to efficiently separate composite shapes into rectangles.		

Measurement: Area of Composite Shapes

To calculate the area of composite shapes.		
I can separate composite shapes into separate rectangles.		
I can multiply the length and width of each rectangle.		
I can add the area of each rectangle together to find the total area of a composite shape.		
I can explain how to efficiently separate composite shapes into rectangles.		

